Kurze Mitteilung

Kristallstruktur von Morpholinium-2,3-dicyano-hydrochinolat [1]

H. Schödel, W. Seitz, H. Bock* und J. W. Bats

Chemische Institute der J.-W.-Goethe Universität, D-60439 Frankfurt/Main, Germany

Crystal Structure of Morpholinium-2,3-dicyano-hydroquinolate [1] (Short Comm.)

Summary. On deprotonation of 2,3-dicyano-*p*-hydroquinone by morpholine, a network of hydrogen bonds is formed in which the chains of hydroquinone monoanions are connected by strong ${}^{\oplus}N-H\cdots O$ and by weak ${}^{\oplus}N-H\cdots N$ bonds *via* the morpholinium nitrogens.

Keywords. Crystal structure determination; Hydroquinone; Multiple hydrogen bonding.

Einleitung

Cyano-substituierte Hydrochinone sind Synthesezwischenprodukte zu den entsprechenden *p*-Benzochinonen, welche sich als Akzeptorkomponenten in Komplexen mit geeigneten Donatoren bewähren [2] und sich durch die Ausbildung von Wasserstoffbrückenbindungen in ihren Festkörperstrukturen auszeichnen [3]. So kristallisiert 2,3,5,6-Tetracyanohydrochinon, dessen *p*-Benzochinon der bislang stärkste in neutraler Form isolierte π -Akzeptor ist [4], mit der kürzesten bekannten OH…NC-Brücke ($d_{0...N} = 277 \text{ pm}$ [3]). Die herausragende und auf der Bildung des energetisch günstigen Dianions beruhende Acidität des vierfach cyano- substituierten Biphenols ermöglicht die Protonierung von Morpholin unter Bildung eines Dimorpholiniumsalzes, welches ein Netzwerk verzweigter Wasserstoffbrücken zwischen Hydrochinon-Dianion-Sauerstoffen und den Morpholinium-Stickstoffen enthält [3]. Das weniger acide 2,3-Dicyanohydrochinon wird durch Morpholin in methanolischer Lösung nur an einer der beiden O–H-Gruppen deprotoniert. Die Kristallstruktur des erhaltenenen Morpholinium-2,3-dicyanohydrochinolats wird hier vorgestellt.

Ergebnisse und Diskussion

Die Kristallstruktur der Titelverbindung, welche durch $O-H\cdots O^{\ominus}$ verbrückte Ketten zwischen den einfach deprotonierten Hydrochinolatanionen entlang der 2_1 -Schraubenachse in der kristallographischen y-Richtung gekennzeichnet ist (Abb. 1: A und B), enthält drei verschiedenartige Wasserstoffbrückenbindungen.

Abb. 1. Details der Kristallstruktur von Morpholinium-2,3-dicyano-hydrochinolat: (A) $O-H\cdots^{\ominus}$ verbrückte Anion-Ketten mit den angelagerten Morpholiniumkationen; (B) ${}^{\oplus}N-H\cdots O^{\ominus}$ -verbrückte Schichten in der *y*, *x*-Ebene; (C) H-Brücken-Verzweigung am anionischen Sauerstoff O2; (D) schwache Wechselwirkungen ${}^{\oplus}N-H\cdots N$ mit Numerierung der asymmetrischen Einheit und Auslenkungsparametern mit 50% iger Aufenthaltswahrscheinlichkeit ($\otimes = O$; $\otimes = N$; $\bigcirc = C$)

- i) Die Hydroxylfunktion eines Molekülanions richtet eine H-Brücke mit einem Abstand OH…O[⊕] von 256.9(4) pm und einem Winkel OHO von 174(3)° auf den deprotonierten Sauerstoff des benachbarten Anions, so daß eine zickzackförmige Kette mit einem Interplanarwinkel von 14.6° zwischen den Ringebenen benachbarter Moleküle entsteht (Abb. 1: C).
- ii) Eine [⊕]N−H…O[⊖] Bindung von 267.9(5) pm Länge und einem Winkel NHO von 172(2)° verbrückt den protonierten Stickstoff des Morpholins mit dem anionischen Sauerstoff des Hydrochinons (Abb. 1: C).

iii) Eine schwache Wechselwirkung mit einem Abstand N-H…N von 307.0(5) pm und unter einem Winkel NHN von 140(2)° ist zwischen der (H)[⊕]N-H-Gruppe des protonierten Morpholins und einem Nitrilstickstoff zu erkennen (Abb. 1: D).

Das resultierende Wasserstoffbrückennetzwerk wird zusätzlich wie folgt kommentiert: Ketten $O-H\cdots O^{\ominus}$ -verbrückter Anionen finden sich in zahlreichen literaturbekannten [2-4] Kristallstrukturen einfach deprotonierter, cvano- substituierter Hydrochinone. In diesen sind jedoch häufig die beiden Sauerstoffe infolge eines Inversionszentrum in der Sechsringmitte kristallographisch äquivalent, so daß entgegen dem hier vorgelegten Bericht exakte Aussagen über die H-Brückengeometrie offen bleiben müssen. Die O-H \cdots O $^{\odot}$ -Brücke mit dem 257 pm langem O \cdots O-Abstand liegt im Bereich zwischen 245 und 260 pm, der den stärkeren Wechselwirkungen entspricht [5]. Die Bindungslänge O-H von 100(3) pm paßt in die literaturbekannte Korrelation mit dem zugehörigen O…O-Abstand Г6Т. Die Kopf/Schwanz-Anordnung der Hydrochinolat-Anionen führt zu Ketten mit Morpholiniumkationen als Zwischengliedern. Beide beteiligten H-Brücken sind mit Knick-Winkeln $\phi(C-O^{\ominus}\cdots O) = 114^{\circ}$ und $\phi(C-O^{\ominus}\cdots N) = 118^{\circ}$ weitgehend auf die O2-Elektronenpaare des Hydrochinon-H-Akzeptors ausgerichtet (Abb. 1: C). Die zweite Morpholin-[®]NH-Bindung ermöglicht die zusätzliche schwache Wechselwirkung mit einem der Nitrilstickstoffe und damit die Verknüpfung der Hydrochinolatanion/Morpholiniumkation-Stränge zu Schichten parallel der kristallographischen v,z-Ebene, welche ihrerseits durch $N-H\cdots O^{\ominus}$ -Brücken zusammengehalten werden (Abb. 1: B). In Richtung der x-Achse sind Morpholiniumkationen und 2,3-Dicvanhvdrochinolatanionen jeweils in getrennten Stapeln gepackt.

Die Molekülstrukturdaten (Tabelle 1) belegen eine deutliche Verzerrung des Sechsringes. Die C2-C3-Bindung zwischen den cyanosubstituierten Kohlenstoffen ist mit 142.5(2) pm deutlich länger als die gegenüberliegende zwischen C5 und C6 (136.8(3) pm). Der, *ipso*'-Winkel \leq C3–C4–C5 des innerhalb der Standardabweichung völlig planaren Hydrochinonanions wird durch den Elektronendonatoreffekt des O^{\odot}-Substituenten auf 116.9(3)^{\circ} verringert [7]. Das Morpholingerüst besitzt die übliche Sesselkonformation.

Die Ausbildung der starken $O-H\cdots O^{\ominus}$ -Brückenbindung bestätigt die literaturbekannte Regel zur energetischen Bevorzugung der H-Brücke zwischen dem stärksten Protonendonator und dem stärksten Protonenakzeptor [8]. Hierauf beruht auch die unterschiedliche Kristallstruktur des zweifachen Morpholiniumsalzes des 2,3,5,6-Tetracyanohydrochinondianions [3], in welcher die anionischen Sauerstoffe jeweils oberhalb und unterhalb der Molekülebene durch Morpholinium- $^{\oplus}NH_2$ -Einheiten verbrückt sind. Das hieraus resultierende H-Brückenmuster wäre zwar auch zu dem anionischen Sauerstoff der Titelverbindung vorstellbar, wird jedoch wegen der energetisch bevorzugten, starken $O-H\cdots O^{\ominus}$ -Brücke nicht realisiert.

Experimentelles

[Morpholinium][⊕]-[2,3-Dicyanohydrochinon][⊕]

Zu 5g (31 mmol) 2,3-Dicyanohydrochinon in 10 ml Methanol wird unter Rühren eine Lösung von 0.55 ml (62 mmol) Morpholin in 5 ml wasserfreiem Diethylether getropft und die rotbraun gefärbte

2,3-Dicyanohydrochinonanion					
O(1)-C(1)	134.3(2)	O(1)-C(1)-C(2)	119.0(2)		
O(2)–C(4)	131.8(2)	O(1)-C(1)-C(6)	123.2(2)		
N(1)-C(7)	113.9(2)	C(2)-C(1)-C(6)	117.8(2)		
N(2)–C(8)	113.9(2)	C(1)-C(2)-C(3)	120.5(2)		
C(1)–C(2)	138.8(2)	C(1)-C(2)-C(7)	120.3(1)		
C(1)-C(6)	139.5(2)	C(3)-C(2)-C(7)	119.2(1)		
C(2)–C(3)	142.5(2)	C(4)-C(3)-C(2)	121.5(2)		
C(2)-C(7)	143.2(2)	C(4)-C(3)-C(8)	120.0(1)		
C(3)–C(4) 139.4(2)		C(2)-C(3)-C(8)	118.5(1)		
C(3)–C(8)	143.6(2)	O(2) - C(4) - C(3)	122.1(2)		
C(4)–C(5)	141.1(2)	O(2) - C(4) - C(5)	121.8(2)		
C(5)-C(6)	136.8(3)	C(3)-C(4)-C(5)	116.2(1)		
		C(6)-C(5)-C(4)	122.4(2)		
		C(5)-C(6)-C(1)	121.6(2)		
		N(1)-C(7)-C(2)	178.1(2)		
		N(2)-C(8)-C(3)	178.0(2)		
Morpholinium	kation				
O(3)–C(9)	142.1(3)	O(9)-O(3)-C(12)	109.9(2)		
O(3)-C(12)	142.6(3)	C(11)-N(3)-C(10)	111.5(2)		
N(3)-C(11)	148.6(3)	O(3)-C(9)-C(10)	111.4(2)		
N(3)-C(10)	148.9(3)	N(3)-C(10)-C(9)	108.8(2)		
C(9)-C(10)	149.4(3)	N(3)-C(11)-C(12)	109.5(2)		
C(11)-C(12)	149.4(3)	O(3)-C(12)-C(11)	110.9(2)		

Tabelle 1. Bindungslängen (pm) und Bindungswinkel (°)

Reaktionsmischung bei Raumtemperatur 24 h gerührt. Nach Versetzen mit weiteren 20 ml Diethylether kristallisieren innerhalb von 2 d zunächst 2.26 g (29.3%) braune Quader von [Morpholinium]^{\oplus}-[2,3-Dicyanohydrochinon]^{\oplus} mit Schmp. 170° (Zers.). Ber.: 58.28% C, 5.3% H; gef.: 58.74% C, 5.13% H; IR-Spektrum (KBr): 3220 cm⁻¹(s) O–H, 2240 cm⁻¹(s) C=N, 1620 cm⁻¹(m) C=C, 1050 cm⁻¹(m) C–O–C. Einen Tag nach deren Isolierung erhält man 1.24 g (14.3%) rote Nadeln von 2,5-Di-N-morpholin-*p*-benzochinon [9] mit Schmp. 248 °C (Zers. Lit. [10]: 250 °C). Ber.: 60.4% C, 6.52% H; gef. 60.93% C, 6.67% H; IR-Spektrum (KBr): 3040 cm⁻¹(m) C=C–H; 2840 cm⁻¹(m) CH₂–O–CH₂; 1630 cm⁻¹(s) C=O; 1560 cm⁻¹(s) C=C [11].

Kristallstrukturbestimmung

Ein brauner, transparenter Einkristall (Abmessungen $0.88 \times 0.55 \times 0.45 \text{ mm}^3$) wurde auf einem Enraf-Nonius-CAD4-Diffraktometer (Cu-K_a-Strahlung, $\lambda = 1.5418$) bei RT vermessen. Zellkonstanten: $a = 716.5(1) \text{ pm}, b = 1280.7(1) \text{ pm}, c = 1305.1(1) \text{ pm}, V = 1197.6(2) \cdot 10^6 \text{ pm}^3, Z = 4, \rho_{calc} = 1.371$. Es wurden 4911 Reflexe im Bereich $10^\circ \leq 2\Theta \leq 140^\circ$ registriert; davon wurden 1325 unabhängige und 1320 mit $I > 2\sigma(I)$ zur Verfeinerung verwendet. Eine Lp-Korrektur und eine empirische Absorptionskorrektur ($\mu = 0.84 \text{ mm}^{-1}$) über psi-Scan mit 6 Reflexen wurde durchgeführt. Äquivalente Reflexe Kristallstruktur von Morpholinium-2,3-dicyano-hydrochinolat

	X	Y	Ζ	$U_{\rm eq}$
O(1)	5035(3)	1355(1)	3555(1)	59(1)
O(2)	4072(2)	5615(1)	3212(1)	45(1)
N(1)	4748(4)	2180(2)	6123(1)	62(1)
N(2)	4245(4)	5161(1)	5921(1)	62(1)
C(1)	4810(3)	2390(1)	3452(1)	40(1)
C(2)	4636(3)	3000(1)	4326(1)	35(1)
C(3)	4396(2)	4101(1)	4246(1)	34(1)
C(4)	4306(3)	4598(1)	3297(1)	37(1)
C(5)	4499(3)	3949(1)	2428(1)	44(1)
C(6)	4739(3)	2892(1)	2504(1)	45(1)
C(7)	4703(3)	2528(1)	5321(1)	42(1)
C(8)	4297(3)	4705(1)	5172(1)	41(1)
O(3)	-1041(2)	6425(1)	4949(1)	57(1)
N(3)	586(3)	6347(1)	2983(1)	52(1)
C(9)	425(3)	7119(2)	4677(2)	51(1)
C(10)	417(3)	7348(1)	3555(2)	51(1)
C(11)	-864(4)	5584(2)	3304(2)	60(1)
C(12)	-794(3)	5450(2)	4441(2)	55(1)
H(01)	5299(46)	1069(23)	2857(22)	85(9)
H(02)	443(43)	6468(21)	2263(22)	78(8)
H(03)	1813(46)	6085(23)	3131(20)	81(9)

Tabelle 2. Atomkoordinaten ($\cdot 10^4$) und äquivalente isotrope Auslenkungsparameter (pm² $\cdot 10^{-1}$)

Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen Tensors

wurden gemittelt ($R_{int} = 0.011$). Die Strukturlösung erfolgte in der orthorhomischen Raumgruppe P2₁2₁2₁ (Nr. 19) durch direkte Methoden mit dem Programm SHELXS-86 [12]. Die C-, N- und O-Lagen wurden mit anisotropen Auslenkungsparametern verfeinert, O-H- und N-H – Positionen wurden der Fourier-Differenz-Synthese entnommen und mit isotropen Auslenkungsparametern frei verfeinert. Die restlichen Wasserstoffe wurden ideal positioniert ($d_{C-H(Phenyl)}=93$ pm, $d_{C-H(Methylen)}=97$ pm) und mit festen Auslenkungsparametern nach dem *Reiter*-Modell verfeinert. Die Verfeinerung von 164 Parametern erfolgte basierend auf F^2 mit dem Programm SHELXL-93 [13] und dem Wichtungsschema $1/[\sigma^2(F_{O^2}) + (0.0566 \cdot P)^2 + 0.1566 \cdot P]$ mit $P = (Max (F_{O^2}, 0) + 2 \cdot F_{C^2})/3$, RI = 0.0349, wR2 = 0.0896, S = 1.093, $\Delta \rho$: $0.23/-0.15 e/Å^3$. Die absolute Struktur ließ sich nicht bestimmen. Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-59207, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, dem Land Hessen und der A. Messer-Stiftung gefördert.

Literatur

- [1] 84. Mitteilung über Wechselwirkungen in Kristallen. 83. Mitteilung: Näther C, John A, Bock H (1995) Acta Cryst C51 (zur Publikation eingereicht)
- [2] Bock, H (1994) Mol Cryst Liqu Cryst 240: 155
- [3] Bock, H, Seitz W, Havlas Z, Bats JW (1993) Angew Chem 105: 410; Angew Chem Int Ed Engl 32: 411
- [4] Vazquez C, Calabrese JC, Dixon DA, Miller JS (1993) J Org Chem 58: 65
- [5] Hibbert F, Emsley J (1990) Adv Phys Org Chem 26: 255
- [6] Ichikawa M (1978) Acta Cryst B34: 2074
- [7] Bock H, Ruppert K, Näther C, Havlas Z, Herrmann H-F, Arad C, Göbel I, John A, Meuret J, Nick S, Rauschenbach A, Seitz W, Vaupel T, Solouki B (1992) Angew Chem 104: 564; Angew Chem Int Ed Engl 31: 550
- [8] Etter MC (1990) Acc Chem Res 23: 120
- [9] Bock H, Nick S, Seitz W, Näther C, Bats JW (1995) B Naturforsch B (zur Publikation eingereicht)
- [10] Seitz W (1995) Dissertation Universität Frankfurt, Bundesrepublik Deutschland
- [11] Henry RA, Dehn WM (1952) J Am Chem Soc 74: 278
- [12] Sheldrick GM (1986) SHELXS-86. Programm für die Lösung von Kristallstrukturen. Universität Göttingen, Bundesrepublik Deutschland
- [13] Sheldrick GM (1993) SHELXL-93. Programm f
 ür die Verfeinerung von Kristallstrukturdaten. Universit
 ät G
 öttingen, Bundesrepublik Deutschland

Received March 23, 1995. Accepted July 25, 1995

68